The Effects of Thermal Radiation
نویسنده
چکیده
This work seeks to improve understanding of atmospheres in radiative-convective equilibrium. We use two types of idealized, dry radiative-convective models. The first type of model resembles Rayleigh-Benard convection, except that thermal radiative transfer is included. This type of system can be investigated in the laboratory. The second type of model is a more faithful representation of the earth's atmosphere. In this model, the temperature at the upper boundary is left unspecified, unlike the case of Rayleigh-Benard convection. For these two types of radiative-convective models, we perform various theoretical and numerical analyses of the stability properties, and various analyses of the weakly nonlinear convecting state. We prove that in these models, convection arises as monotonically growing cells, not as an oscillatory instability. That is, we prove exchange of stabilities. We investigate the linear stability modes. We find that in most cases, the linear stability threshold can be described approximately or exactly in terms of a radiative Rayleigh number. The radiative Rayleigh numbers used are like the classical Rayleigh number but with modified temperature and thermal diffusivity scales. Inspection of the radiative Rayleigh numbers reveals how various external parameters, such as the net incoming solar radiation or infrared opacity, affect the stability properties. We use the energy method to find a threshold value of a stability parameter below which all disturbances to the radiative equilibrium state, regardless of magnitude, decay. For those radiative equilibrium states which have a linear temperature profile, the energy stability threshold coincides with the linear stability threshold, thereby ruling out the possibility of subcritical instabilities. When the temperature profile is nonlinear, the energy stability profile lies below the linear stability threshold. We study weakly nonlinear convection in the atmospheric radiative-convective model via the mean field approximation. In contrast to the stability threshold, the vertical convective heat flux in the weakly nonlinear convecting state turns out to be little affected by the values of viscosity, thermal diffusivity, or radiative damping. However, the convective heat flux is strongly affected by the net incoming solar radiation and the optical depth. We formulate scaling laws for vertical convective heat flux, vertical velocity, and temperature perturbations. These scales extend the Prandtl scales to higher altitudes. Thesis Supervisor: Kerry A. Emanuel Title: Professor II___1__Y_1J__UIIIU_~~_-_Y^--I
منابع مشابه
Effects of heat generation and thermal radiation on steady MHD flow near a stagnation point on a linear stretching sheet in porous medium and presence of variable thermal conductivity and mass transfer
The present paper was aimed to study the effects of variable thermal conductivity and heat generation on the flow of a viscous incompressible electrically conducting fluid in the presence of a uniform transverse magnetic field, thermal radiation, porous medium, mass transfer, and variable free stream near a stagnation point on a non-conducting stretching sheet. Equations of continuity, momentum...
متن کاملEffects of thermal diffusion and chemical reaction on MHD transient free convection flow past a porous vertical plate with radiation, temperature gradient dependent heat source in slip flow regime
An analytical investigation is conducted to study the unsteady free convection heat and mass transfer flow through a non-homogeneous porous medium with variable permeability bounded by an infinite porous vertical plate in slip flow regime while taking into account the thermal radiation, chemical reaction, the Soret number, and temperature gradient dependent heat source. The flow is considered u...
متن کاملMHD thermal radiation and chemical reaction effects with peristaltic transport of the eyring-powell fluid through a porous medium
In this paper, we analyze the thermal radiation and chemical reaction impacts on MHD peristaltic motion of the Eyring-Powell fluid through a porous medium in a channel with compliant walls under slip conditions for velocity, temperature, and concentration. Assumptions of a long wave length and low Reynolds number are considered. The modeled equations are computed by using the perturbation metho...
متن کاملEffects of Thermal Diffusion and Radiation on Magnetohydrodynamic (MHD) Chemically Reacting Fluid Flow Past a Vertical Plate in a Slip Flow Regime
An analysis has been conceded to study the effects of Soret and thermal radiation effects on the magnetohydrodynamic convective flow of a viscous, incompressible, electrically conducting fluid with heat and mass transfer over a plate with time-dependent suction velocity in a slip flow regime in the presence of first-order chemical reaction. The slip conditions at the boundaries for the governin...
متن کاملChemical reaction and thermal radiation effects on MHD micropolar fluid past a stretching sheet embedded in a non-Darcian porous medium
The paper aims at investigating the effects of chemical reaction and thermal radiation on the steady two-dimensional laminar flow of viscous incompressible electrically conducting micropolar fluid past a stretching surface embedded in a non-Darcian porous medium. The radiative heat flux is assumed to follow Rosseland approximation. The governing equations of momentum, angular momentum, energy, ...
متن کاملNumerical Analysis of the Thermal Interaction of Cell Phone Radiation with Human Eye Tissues
Introduction: The present study aimed to present a numerical analysis of the penetration depth, specific absorption rate (SAR), and temperature rise in various eye tissues with varying distance between radiation source and exposed human eye tissues (i.e., cornea, posterior chamber, anterior chamber, lens, sclera, vitreous humor, and iris) at frequencies of 900 and1800 MHz. Materials and Method...
متن کامل